icemix¶
Implementation of IceMix.
This method was a solution submitted to the IceCube - Neutrinos in Deep Ice Kaggle competition.
Solution by DrHB: https://github.com/DrHB/icecube-2nd-place
- class graphnet.models.gnn.icemix.DeepIce(*args, **kwargs)[source]¶
Bases:
GNN
DeepIce model.
Construct DeepIce.
- Parameters:
hidden_dim (
int
, default:384
) – The latent feature dimension.mlp_ratio (
int
, default:4
) – Mlp expansion ratio of FourierEncoder and Transformer.seq_length (
int
, default:192
) – The base feature dimension.depth (
int
, default:12
) – The depth of the transformer.head_size (
int
, default:32
) – The size of the attention heads.depth_rel (
int
, default:4
) – The depth of the relative transformer.n_rel (
int
, default:1
) – The number of relative transformer layers to use.scaled_emb (
bool
, default:False
) – Whether to scale the sinusoidal positional embeddings.include_dynedge (
bool
, default:False
) – If True, pulse-level predictions from DynEdge will be added as features to the model.dynedge_args (
Optional
[Dict
[str
,Any
]], default:None
) – Initialization arguments for DynEdge. If not provided, DynEdge will be initialized with the original Kaggle Competition settings. If include_dynedge is False, this argument have no impact.n_features (
int
, default:6
) – The number of features in the input data.args (Any)
kwargs (Any)
- Return type:
object