dynedge_kaggle_tito¶
Implementation of DynEdge architecture used in.
IceCube - Neutrinos in Deep Ice
Reconstruct the direction of neutrinos from the Universe to the South Pole
Kaggle competition.
Solution by TITO.
- class graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO(*args, **kwargs)[source]¶
Bases:
GNN
DynEdgeTITO (dynamical edge convolutional with Transformer) model.
Construct DynEdgeTITO.
- Parameters:
nb_inputs (
int
) – Number of input features on each node.features_subset (
Optional
[List
[int
]], default:None
) – The subset of latent features on each node that are used as metric dimensions when performing the k-nearest neighbours clustering. Defaults to [0,1,2,3].dyntrans_layer_sizes (
Optional
[List
[Tuple
[int
,...
]]], default:None
) – The layer sizes, or latent feature dimenions, used in the DynTrans layer. Defaults to [(256, 256), (256, 256), (256, 256), (256, 256)].global_pooling_schemes (
List
[str
], default:['max']
) – The list global pooling schemes to use. Options are: “min”, “max”, “mean”, and “sum”.use_global_features (
bool
, default:True
) – Whether to use global features after pooling.use_post_processing_layers (
bool
, default:True
) – Whether to use post-processing layers after the DynTrans layers.post_processing_layer_sizes (
Optional
[List
[int
]], default:None
) – The layer sizes used in the post-processing layers. Defaults to [336, 256].readout_layer_sizes (
Optional
[List
[int
]], default:None
) – The layer sizes used in the readout layers. Defaults to [256, 128].n_head (
int
, default:8
) – The number of heads to use in the DynTrans layer.nb_neighbours (
int
, default:8
) – The number of neighbours to use in the DynTrans layer.args (Any)
kwargs (Any)
- Return type:
object