easy_model

Suggested Model subclass that enables simple user syntax.

class graphnet.models.easy_model.EasySyntax(*args, **kwargs)[source]

Bases: Model

A suggested Model class that comes with simple user syntax.

This class delivers simple user syntax for training and prediction, while imposing minimal constraints on structure.

Construct StandardModel.

Parameters:
  • args (Any)

  • kwargs (Any)

Return type:

object

compute_loss(preds, data, verbose)[source]

Compute and sum losses across tasks.

Return type:

Tensor

Parameters:
  • preds (Tensor)

  • data (List[Data])

  • verbose (bool)

forward(data)[source]

Forward pass, chaining model components.

Return type:

List[Union[Tensor, Data]]

Parameters:

data (Data | List[Data])

shared_step(batch, batch_idx)[source]

Perform shared step.

Applies the forward pass and the following loss calculation, shared between the training and validation step.

Return type:

Tensor

Parameters:
  • batch (List[Data])

  • batch_idx (int)

validate_tasks()[source]

Verify that self._tasks contain compatible elements.

Return type:

None

fit(train_dataloader, val_dataloader, *, max_epochs, early_stopping_patience, gpus, callbacks, ckpt_path, logger, log_every_n_steps, gradient_clip_val, distribution_strategy, **trainer_kwargs)[source]

Fit StandardModel using pytorch_lightning.Trainer.

Return type:

None

Parameters:
  • train_dataloader (DataLoader)

  • val_dataloader (DataLoader | None)

  • max_epochs (int)

  • early_stopping_patience (int)

  • gpus (List[int] | int | None)

  • callbacks (List[Callback] | None)

  • ckpt_path (str | None)

  • logger (Logger | None)

  • log_every_n_steps (int)

  • gradient_clip_val (float | None)

  • distribution_strategy (str | None)

  • trainer_kwargs (Any)

property target_labels: List[str]

Return target label.

property prediction_labels: List[str]

Return prediction labels.

configure_optimizers()[source]

Configure the model’s optimizer(s).

Return type:

Dict[str, Any]

training_step(train_batch, batch_idx)[source]

Perform training step.

Return type:

Tensor

Parameters:
  • train_batch (Data | List[Data])

  • batch_idx (int)

validation_step(val_batch, batch_idx)[source]

Perform validation step.

Return type:

Tensor

Parameters:
  • val_batch (Data | List[Data])

  • batch_idx (int)

inference()[source]

Activate inference mode.

Return type:

None

train(mode)[source]

Deactivate inference mode.

Return type:

Model

Parameters:

mode (bool)

predict(dataloader, gpus, distribution_strategy, **trainer_kwargs)[source]

Return predictions for dataloader.

Return type:

List[Tensor]

Parameters:
  • dataloader (DataLoader)

  • gpus (List[int] | int | None)

  • distribution_strategy (str | None)

  • trainer_kwargs (Any)

predict_as_dataframe(dataloader, prediction_columns, *, additional_attributes, gpus, distribution_strategy, **trainer_kwargs)[source]

Return predictions for dataloader as a DataFrame.

Include additional_attributes as additional columns in the output DataFrame.

Return type:

DataFrame

Parameters:
  • dataloader (DataLoader)

  • prediction_columns (List[str] | None)

  • additional_attributes (List[str] | None)

  • gpus (List[int] | int | None)

  • distribution_strategy (str | None)

  • trainer_kwargs (Any)