iseecube¶
Implementation of ISeeCube Transformer architecture used in.
https://github.com/ChenLi2049/ISeeCube/
- class graphnet.models.transformer.iseecube.ISeeCube(*args, **kwargs)[source]¶
Bases:
GNNISeeCube model.
Construct ISeeCube.
- Parameters:
hidden_dim (
int, default:384) – The latent feature dimension.seq_length (
int, default:196) – The number of pulses in a neutrino event.num_layers (
int, default:16) – The depth of the transformer.num_heads (
int, default:12) – The number of the attention heads.mlp_dim (
int, default:1536) – The mlp dimension of FourierEncoder and Transformer.rel_pos_buckets (
int, default:32) – Relative position buckets for relative position bias.max_rel_pos (
int, default:256) – Maximum relative position for relative position bias.num_register_tokens (
int, default:3) – The number of register tokens.scaled_emb (
bool, default:False) – Whether to scale the sinusoidal positional embeddings.n_features (
int, default:6) – The number of features in the input data.args (Any)
kwargs (Any)
- Return type:
object