Source code for graphnet.models.normalizing_flow

"""Standard model class(es)."""

from typing import Dict, List, Optional, Union, Type
import torch
from torch import Tensor
from torch_geometric.data import Data
from torch.optim import Adam

from graphnet.models.gnn.gnn import GNN
from .easy_model import EasySyntax
from graphnet.models.task import StandardFlowTask
from graphnet.models.graphs import GraphDefinition
from graphnet.models.utils import get_fields


[docs] class NormalizingFlow(EasySyntax): """A model for building (conditional) normalizing flows in GraphNeT. This model relies on `jammy_flows` for building and evaluating normalizing flows. https://thoglu.github.io/jammy_flows/usage/introduction.html for details. """ def __init__( self, graph_definition: GraphDefinition, target_labels: str, backbone: Optional[GNN] = None, condition_on: Union[str, List[str], None] = None, flow_layers: str = "gggt", optimizer_class: Type[torch.optim.Optimizer] = Adam, optimizer_kwargs: Optional[Dict] = None, scheduler_class: Optional[type] = None, scheduler_kwargs: Optional[Dict] = None, scheduler_config: Optional[Dict] = None, ) -> None: """Build NormalizingFlow to learn (conditional) normalizing flows. NormalizingFlow is able to build, train and evaluate a wide suite of normalizing flows. Instead of optimizing a loss function, flows minimize a learned pdf of your data, providing you with a posterior distribution for every example instead of point-like predictions. `NormalizingFlow` can be conditioned on existing fields in the DataRepresentation or latent representations from `Models`. NormalizingFlow is built upon https://github.com/thoglu/jammy_flows, and we refer to their documentation for details on the flows. Args: graph_definition: The `GraphDefinition` to train the model on. target_labels: Name of target(s) to learn the pdf of. backbone: Architecture used to produce latent representations of the input data on which the pdf will be conditioned. Defaults to None. condition_on: List of fields in Data objects to condition the pdf on. Defaults to None. flow_layers: A string defining the flow layers. See https://thoglu.github.io/jammy_flows/usage/introduction.html for details. Defaults to "gggt". optimizer_class: Optimizer to use. Defaults to Adam. optimizer_kwargs: Optimzier arguments. Defaults to None. scheduler_class: Learning rate scheduler to use. Defaults to None. scheduler_kwargs: Arguments to learning rate scheduler. Defaults to None. scheduler_config: Defaults to None. Raises: ValueError: if both `backbone` and `condition_on` is specified. """ # Checks if (backbone is not None) & (condition_on is not None): # If user wants to condition on both raise ValueError( f"{self.__class__.__name__} got values for both " "`backbone` and `condition_on`, but can only" "condition on one of those. Please specify just " "one of these arguments." ) # Handle args if backbone is not None: assert isinstance(backbone, GNN) hidden_size = backbone.nb_outputs elif condition_on is not None: if isinstance(condition_on, str): condition_on = [condition_on] hidden_size = len(condition_on) else: hidden_size = None # Build Flow Task task = StandardFlowTask( hidden_size=hidden_size, flow_layers=flow_layers, target_labels=target_labels, ) # Base class constructor super().__init__( tasks=task, optimizer_class=optimizer_class, optimizer_kwargs=optimizer_kwargs, scheduler_class=scheduler_class, scheduler_kwargs=scheduler_kwargs, scheduler_config=scheduler_config, ) # Member variable(s) self._graph_definition = graph_definition self.backbone = backbone self._condition_on = condition_on self._norm = torch.nn.BatchNorm1d(hidden_size)
[docs] def forward(self, data: Union[Data, List[Data]]) -> Tensor: """Forward pass, chaining model components.""" if isinstance(data, Data): data = [data] x_list = [] for d in data: if self.backbone is not None: x = self._backbone(d) x = self._norm(x) elif self._condition_on is not None: assert isinstance(self._condition_on, list) x = get_fields(data=d, fields=self._condition_on) else: # Unconditional flow x = None x = self._tasks[0](x, d) x_list.append(x) x = torch.cat(x_list, dim=0) return [x]
def _backbone( self, data: Union[Data, List[Data]] ) -> List[Union[Tensor, Data]]: assert self.backbone is not None return self.backbone(data)
[docs] def shared_step(self, batch: List[Data], batch_idx: int) -> Tensor: """Perform shared step. Applies the forward pass and the following loss calculation, shared between the training and validation step. """ loss = self(batch) if isinstance(loss, list): assert len(loss) == 1 loss = loss[0] return torch.mean(loss, dim=0)
[docs] def validate_tasks(self) -> None: """Verify that self._tasks contain compatible elements.""" accepted_tasks = StandardFlowTask for task in self._tasks: assert isinstance(task, accepted_tasks)