Source code for graphnet.models.model

"""Base class(es) for building models."""

from abc import ABC
import dill
import os.path
from typing import Any, Dict, List, Optional, Union

from pytorch_lightning import LightningModule
import torch
from torch_geometric.data import Data

from graphnet.utilities.deprecation_tools import rename_state_dict_entries
from graphnet.utilities.logging import Logger
from graphnet.utilities.config import (
    Configurable,
    ModelConfig,
    ModelConfigSaverABC,
)


[docs] class Model( Logger, Configurable, LightningModule, ABC, metaclass=ModelConfigSaverABC ): """Base class for all components in graphnet.""" verbose_print = True @staticmethod def _get_batch_size(data: List[Data]) -> int: return sum([torch.numel(torch.unique(d.batch)) for d in data])
[docs] def save(self, path: str) -> None: """Save entire model to `path`.""" if not path.endswith(".pth"): self.info( "It is recommended to use the .pth suffix for model files." ) dirname = os.path.dirname(path) if dirname: os.makedirs(dirname, exist_ok=True) torch.save(self.cpu(), path, pickle_module=dill) self.info(f"Model saved to {path}")
[docs] @classmethod def load(cls, path: str) -> "Model": """Load entire model from `path`.""" return torch.load(path, pickle_module=dill)
[docs] def save_state_dict(self, path: str) -> None: """Save model `state_dict` to `path`.""" if not path.endswith(".pth"): self.info( "It is recommended to use the .pth suffix " "for state_dict files." ) state_dict = self.state_dict() for key, value in state_dict.items(): state_dict[key] = value.cpu() torch.save(state_dict, path) self.info(f"Model state_dict saved to {path}")
[docs] def load_state_dict( # type: ignore[override] self, path: Union[str, Dict], **kargs: Optional[Any] ) -> "Model": # pylint: disable=arguments-differ """Load model `state_dict` from `path`.""" if isinstance(path, str): state_dict = torch.load(path) else: state_dict = path # DEPRECATION UTILITY: REMOVE AT 2.0 LAUNCH # See https://github.com/graphnet-team/graphnet/issues/647 state_dict, state_dict_altered = rename_state_dict_entries( state_dict=state_dict, old_phrase="_gnn", new_phrase="backbone" ) if state_dict_altered: self.warning( "DeprecationWarning: State dicts with `_gnn`" " entries will be deprecated in GraphNeT 2.0" ) return super().load_state_dict(state_dict, **kargs)
[docs] @classmethod def from_config( # type: ignore[override] cls, source: Union[ModelConfig, str], trust: bool = False, load_modules: Optional[List[str]] = None, ) -> "Model": """Construct `Model` instance from `source` configuration. Arguments: trust: Whether to trust the ModelConfig file enough to `eval(...)` any lambda function expressions contained. load_modules: List of modules used in the definition of the model which, as a consequence, need to be loaded into the global namespace. Defaults to loading `torch`. Raises: ValueError: If the ModelConfig contains lambda functions but `trust = False`. """ if isinstance(source, str): source = ModelConfig.load(source) assert isinstance( source, ModelConfig ), f"Argument `source` of type ({type(source)}) is not a `ModelConfig" return source._construct_model(trust, load_modules)
[docs] def set_verbose_print_recursively(self, verbose_print: bool) -> None: """Set verbose_print recursively for all Model modules.""" for module in self.modules(): if isinstance(module, Model): module.verbose_print = verbose_print self.verbose_print = verbose_print
[docs] def extra_repr(self) -> str: """Provide a more detailed description of the object print. Returns: str: A string representation containing detailed information about the object. """ return self._extra_repr() if self.verbose_print else ""
def _extra_repr(self) -> str: """Detailed information about the object.""" return f"""{self.__class__.__name__}(\n{self.extra_repr_recursive( self._config.__dict__)})"""
[docs] def extra_repr_recursive(self, dictionary: dict, indent: int = 4) -> str: """Recursively format a dictionary for extra_repr.""" result = "{\n" for key, value in dictionary.items(): if key == "class_name": continue result += " " * indent + f"'{key}': " if isinstance(value, dict): result += self.extra_repr_recursive(value, indent + 4) elif isinstance(value, Model): result += value.__repr__() else: result += repr(value) result += ",\n" result += " " * (indent - 4) + "}" return result